Abstract

Previous research has suggested that the left anterior insula, specifically the superior precentral gyrus of the insula (SPGI), is a critical brain region for the coordination of complex articulatory movements. However, previous studies have not determined which articulatory factors are specifically dependent on this brain region. In the current study, 33 left hemisphere stroke patients with varying degrees of speech impairment were asked to perform multiple repetitions of single words that varied along three separate dimensions: number of syllables, degree of articulatory travel (i.e., change between places of articulation for consonants), and presence/absence of an initial consonant cluster. The role of the SPGI in performance across the three conditions was determined using voxel-based lesion symptom mapping (VLSM), a statistical approach to lesion analysis that does not require separating patients based on lesion site or symptom profile. Rather, continuous performance data are entered, along with lesions reconstructed in normalized space. Based on preliminary analyses, there was adequate power to detect differences in the SPGI, which was the focus of our predictions. We found that the SPGI was critical for performance on the articulation task across all three conditions, namely, when words were multi-syllabic, required a high degree of travel, or involved an initial consonant cluster. As a control, we also generated a VLSM map for articulation of words with minimal articulatory complexity (i.e., single-syllable words with no initial cluster and a minimal change in place of articulation). In this case, the SPGI was not implicated. The current results suggest that the left SPGI is a critical area for intra- and inter-syllabic coordination of complex articulatory movements, prior to end-stage execution of speech commands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.