Abstract
A thiol-reactive membrane-associated protein (TRAP) binds covalently to the cytoplasmic domain of the human insulin receptor (IR) β-subunit when cells are treated with the homobifunctional cross-linker reagent 1,6-bismaleimidohexane. Here, TRAP was found to be phospholipase C γ1 (PLCγ1) by mass spectrometry analysis. PLCγ1 associated with the IR both in cultured cell lines and in a primary culture of rat hepatocytes. Insulin increased PLCγ1 tyrosine phosphorylation at Tyr-783 and its colocalization with the IR in punctated structures enriched in cortical actin at the dorsal plasma membrane. This association was found to be independent of PLCγ1 Src homology 2 domains, and instead required the pleckstrin homology (PH)–EF-hand domain. Expression of the PH–EF construct blocked endogenous PLCγ1 binding to the IR and inhibited insulin-dependent phosphorylation of mitogen-activated protein kinase (MAPK), but not AKT. Silencing PLCγ1 expression using small interfering RNA markedly reduced insulin-dependent MAPK regulation in HepG2 cells. Conversely, reconstitution of PLCγ1 in PLCγ1 −/− fibroblasts improved MAPK activation by insulin. Our results show that PLCγ1 is a thiol-reactive protein whose association with the IR could contribute to the activation of MAPK signaling by insulin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.