Abstract

Diabetes mellitus is associated with cognitive dysfunction. Numerous previous studies have shown that type 1 diabetes-induced hyperglycaemia causes structural brain damage, such as a decrease in whole-brain grey matter. The impact of diabetes mellitus on the cerebral cortex is poorly understood and requires further clarification. In the present study, diabetes was induced via an intraperitoneal injection of streptozotocin (50 mg/kg). Hematoxylin and eosin (H&E) staining was performed to detect the morphological changes in the cerebral cortex, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining was used to detect neuronal apoptosis and western blotting was performed to determine protein expression levels. Nine weeks after the induction of diabetes, the body weight was significantly lower and the blood glucose levels were significantly higher in the diabetic rats than in the control rats (P<0.05). H&E staining revealed nuclear chromatin condensation and cytoplasmic shrinkage in the cerebral cortex of the diabetic rats and TUNEL staining further indicated apoptotic changes in the cerebral cortex of the diabetic rats. The ratio of B-cell lymphoma 2 (Bcl-2) -associated X protein/Bcl-2 and the expression of cytochrome c and activated caspase-3 (cleaved caspase-3) were significantly increased, whereas the ratio of phosphorylated AKT/AKT was significantly decreased in the diabetic rats compared with that in the control rats (P<0.05). Taken together, these results suggested that diabetes mellitus may induce neuronal apoptosis in the cerebral cortex by downregulating AKT phosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call