Abstract
In mammals, the peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 (PGC-1) family members and their binding partners orchestrate remodelling in response to diverse challenges such as diet, temperature and exercise. In this study, we exposed goldfish to three temperatures (4, 20 and 35 degrees C) and to three dietary regimes (food deprivation, low fat and high fat) and examined the changes in mitochondrial enzyme activities and transcript levels for metabolic enzymes and their genetic regulators in red muscle, white muscle, heart and liver. When all tissues and conditions were pooled, there were significant correlations between the mRNA for the PGC-1 coactivators (both alpha and beta) and mitochondrial transcripts (citrate synthase), metabolic gene regulators including PPARalpha, PPARbeta and nuclear respiratory factor-1 (NRF-1). PGC-1beta was the better predictor of the NRF-1 axis, whereas PGC-1alpha was the better predictor of the PPAR axis (PPARalpha, PPARbeta, medium chain acyl CoA dehydrogenase). In contrast to these intertissue/developmental patterns, the response of individual tissues to physiological stressors displayed no correlations between mRNA for PGC-1 family members and either the NRF-1 or PPAR axes. For example, in skeletal muscles, low temperature decreased PGC-1alpha transcript levels but increased mitochondrial enzyme activities (citrate synthase and cytochrome oxidase) and transcripts for COX IV and NRF-1. These results suggest that in goldfish, as in mammals, there is a regulatory relationship between (i) NRF-1 and mitochondrial gene expression and (ii) PPARs and fatty acid oxidation gene expression. In contrast to mammals, there is a divergence in the roles of the coactivators, with PGC-1alpha linked to fatty acid oxidation through PPARalpha, and PGC-1beta with a more prominent role in mediating NRF-1-dependent control of mitochondrial gene expression, as well as distinctions between their respective roles in development and physiological responsiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.