Abstract

Plant cytochrome P450 enzymes are involved in a wide range of biosynthetic reactions, leading to various fatty acid conjugates, plant hormones, or defensive compounds. Herein, we have identified the pepper cytochrome P450 gene CaCYP450A, which is differentially induced during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaCYP450A contains a heme-binding motif, PXFXXGXRXCXG, located in the C-terminal region and a hydrophobic membrane anchor region at the N terminal. Knock-down of CaCYP450A by virus-induced gene silencing (VIGS) led to increased susceptibility to Xcv infection in pepper. CaCYP450A-overexpressing Arabidopsis plants exhibited lower pathogen growth and reduced disease symptoms, and they were more resistant to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis than wild-type plants. Overexpression of CaCYP450A also enhanced H(2)O(2) accumulation and cell death. However, CaCYP450A Arabidopsis ortholog CYP94B3 mutants showed enhanced susceptibility to virulent Pst DC3000, but not to avirulent Pst DC3000 avrRpm1 or virulent H. arabidopsidis infection. Taken together, these results suggest that CaCYP450A is required for defense responses to microbial pathogens in plants. The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number HM581974.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.