Abstract

Purinergic signaling is a pathway related to pain underlying mechanisms. Adenosine is a neuromodulator responsible for the regulation of multiple physiological and pathological conditions. Extensive advances have been made to understand the role of adenosine in pain regulation. Here we investigated the effects of purinergic compounds able to modulate adenosine production or catabolism on pain responses induced by Acetic Acid (AA) in zebrafish larvae. We investigated the preventive role of the ecto-5′-nucleotidase inhibitor adenosine 5′-(α,β-methylene)diphosphate (AMPCP) and adenosine deaminase inhibitor erythro-9-(2-Hydroxy-3-nonyl)­adenine (EHNA) on the AA-pain induced model. The pain responses were evaluated through exploratory and aversive behaviors in zebrafish larvae. The exploratory behavior showed a reduction in the distance covered by animals exposed to 0.0025% and 0.050% AA. The movement and acceleration were reduced when compared to control. The treatment with AMPCP or EHNA followed by AA exposure did not prevent behavioral changes induced by AA for any parameter tested. There were no changes in aversive behavior after the AA-induced pain model. After AA-induced pain, the AMP hydrolysis increased on zebrafish larvae. However, the AMPCP or EHNA exposure did not prevent changes in AMP hydrolysis induced by the AA-induced pain model in zebrafish larvae. Although AMPCP or EHNA did not show differences in the AA-induced pain model, our results revealed changes in AMP hydrolysis, suggesting the involvement of the purinergic system in zebrafish larvae pain responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call