Abstract

The hard ceramic coating under the external load tends to show cracking and spallation due to the mismatch of deformation between coating and substrate. To moderate the property difference, a CrN/Fe gradient coating was fabricated by double glow plasma alloying at different Ar/N2 ratios. The thermodynamically favorable reaction between Cr and N ensured the spatially gradient structure of CrN and (Fe, Cr) phase without Fe nitrides. The outmost CrN phase possessed over-stoichiometry of N atoms, leading to the N1s spectrum shifted to the lower binding energy. The increased N2 ratio made the nitride content increase from 53.4, 73.6 to 74.0 %. Various volume gradients of nitride/metal contributed to different mechanical behavior of coatings, such as the enhanced hardness (16.3 to 21.5 GPa) and Young’s Modulus. Two indexes, H/E and H3/E2, showed an increasing trend with the increasing N2, which meant better toughness and adequate elastic abilities to suppress radial cracks. Compressive residual stress in these coating ranging from −1.06, −1.16 to −1.44 GPa, also restrained the radial cracks and accelerated the formation of circumferential cracks. Introducing nitride-metal transitional structure lowered the probability of cracks and spallation in the wear test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.