Abstract
We present a mathematical analysis of the piriform cortex activity in rats. Experimental data were obtained by means of optical recording of fluorescent signals driven by neuronal activity. From these data, we determined the numerical value of the relaxation time for the pyramidal cell activity in layers II and III and the time latency map for bulb activation. Our model for the piriform cortex is based on pairs of excitatory and inhibitory neurons which correspond to pyramidal cells of layers II and III and to their inhibitory associated interneurons respectively; pyramidal cells are also interconnected through short and long range association fiber systems. Under such conditions, the model outputs resemble closely the experimental observations: (1) a double-bumped response to a strong and short stimulation; (2) oscillatory behavior under weak sustained stimulation conditions; (3) propagation of traveling activity waves; and (4) pacemaker activity when clusters of neurons are preferentially coupled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.