Abstract

Like other free-living nematodes, the one-millimeter-long nematode Caenorhabditis elegans lives in soils and composts rich in microorganisms, including human microbial pathogens. In the laboratory, C. elegans animals are typically propagated by feeding them Escherichia coli. This bacterium is effectively disrupted by the C. elegans pharyngeal grinder and essentially no intact bacterial cells can be found in the intestinal lumen of healthy, young animals. Once in the gut, however, pathogenic bacteria are capable of proliferating, invading host cells, and killing C. elegans by infectious processes. Bacterial pathogens can also adhere to the cuticle of the nematode, causing a defensive swelling response of the epidermal cells. While C. elegans lacks adaptive immunity, it responds to pathogen exposure by avoiding certain potentially pathogenic bacteria and by activating an inducible innate immune system. Thus, pathogen avoidance, grinding, swelling, peristalsis, and secretion of antimicrobial substances prevent microbial colonization of C. elegans by bacterial pathogens. Increasing evidence highlights the role of the C. elegans nervous system in the control of some of these immune responses against bacterial pathogens.

Highlights

  • Like other free-living nematodes, the one-millimeter-long nematode Caenorhabditis elegans lives in soils and composts rich in microorganisms, including human microbial pathogens

  • Avoidance of certain bacterial pathogens, such as P. aeruginosa, is an important defense mechanism in C. elegans that is regulated by the NPR-1 neural circuit [1,3]

  • A fullgenome expression analysis on animals with altered neural function due to mutation in npr-1 showed an enrichment in genes that are markers of innate immune responses, most of which are expressed in the intestine and/or regulated by a conserved PMK1/p38 mitogen-activated protein kinase (MAPK) signaling pathway [1]

Read more

Summary

Introduction

Like other free-living nematodes, the one-millimeter-long nematode Caenorhabditis elegans lives in soils and composts rich in microorganisms, including human microbial pathogens. This information provides a unique opportunity to study the activity of specific neurons involved in neural-immune communications and to study the flow of signals between neurons in response to pathogen infection. Neurons and Neural Signals Involved in the Control of Immune Responses in C. elegans

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.