Abstract

Epigenetics is a field that encompasses chemical modifications of DNA and histone proteins, both of which alter gene expression without changing the underlying nucleotide sequence. DNA methylation and modifications of histone tails have been studied in detail and are now known to be global gene regulatory mechanisms. An analogous post-transcriptional modification is chemical modification of specific nucleotides in RNA. Study of RNA modifications is a nascent field as yet, and the significance of these marks in controlling cell growth and differentiation is just beginning to be appreciated. The addition of a methyl group to adenosine (N-methyl-6-adenosine) or m6A is the most abundant modification in mammalian mRNAs. Though identified four decades ago, interest in this particular modification was set off by the discovery that the obesity gene FTO was an RNA demethylase. Since then, many studies have investigated m6A modification in different species. In this review, we summarize the current literature and hypotheses about the presence and function of this ubiquitous RNA modification in mammals, viruses, yeast and plants in terms of the consensus sequence and the methyltransferase/demethylation machinery identified thus far. We discuss its potential role in regulating molecular and physiological processes in each of these organisms, especially its role in RNA splicing, RNA degradation and development. We also enlist the methodologies developed so far, both locus-specific and transcriptome-wide, to study this modification. Lastly, we discuss whether m6A alterations have consequences on modulating disease aetiology, and speculate about its potential role in cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.