Abstract

gamma delta T cells, both human and murine, have been found to be highly responsive to mycobacterial antigens. However, the role and function of gamma delta T cells in the immune response to Mycobacterium tuberculosis remain largely unknown. In earlier studies, we demonstrated that monocytes infected with live M. tuberculosis were particularly effective inducers of human peripheral blood gamma delta T cells. The present studies were performed to further characterize the interaction between human mononuclear phagocytes, gamma delta T cells, and live M. tuberculosis, in comparison with CD4+ T cells. First, we found that resting gamma delta T cells expanded in vitro by live M. tuberculosis were specific for M. tuberculosis, and that heat killing and washing the mycobacteria removed the antigen(s) for gamma delta T cells. In contrast, the heat-killed mycobacteria retained significant antigenicity for CD4+ T cells. Second, live M. tuberculosis-expanded gamma delta T cells from healthy tuberculin-positive donors did not respond significantly to the antigens in M. tuberculosis culture filtrate, including the 65- and 71-kDa mycobacterial heat shock proteins. Third, the activation of gamma delta T cells by live mycobacteria was dependent on antigen-presenting cells, and mononuclear phagocytes were found to be very efficient antigen-presenting cells both for resting peripheral blood gamma delta T cells and for activated expanded gamma delta T cells. The mononuclear phagocyte carried the necessary costimulatory factors necessary for gamma delta T-cell proliferation. Fourth, the antigen repertoire and HLA requirements for CD4+ memory T cells and those for gamma delta T cells appear to be quite distinct from each other. CD4+ T cells recognized both soluble protein antigens and whole organisms in a class II major histocompatibility complex-restricted manner, whereas gamma delta T cells appeared to recognize only constituents associated with the whole organism and were not restricted by class I or class II major histocompatibility complex molecules. Finally, the assay system described to expand and purify responding CD4+ and gamma delta T cells after stimulation with live M. tuberculosis represented a simple approach to the direct comparison of these two T-cell populations in the interaction with mononuclear phagocytes infected with M. tuberculosis. Such studies provide insight not only into the relative roles of human CD4+ and gamma delta T cells in the human immune response to intracellular bacterial pathogens such as M. tuberculosis but also into the basic biologic role of human gamma delta T cells in antimicrobial immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call