Abstract

Abstract In an earlier paper, a second-moment turbulence closure model was applied to the problem of the dynamic and thermodynamic interaction of sea ice and the ocean surface mixed layer. An overly simplistic parameterization of the molecular sublayers of temperature and salinity within the mixed layer was used. This paper investigates the use of a more recent parameterization by Yaglom and Kader which is supported by laboratory data. A relatively low melt rate results in the case where ice overlays warm water. This agrees with some recent observations in the interior of the marginal ice zone. A surface heat sink drives the freezing case which, due to the large difference in heat and salt molecular diffusivities, produces a strong supercooling effect. This is converted into an estimate of frazil ice production through a simple scheme. The model results provide an explanation for high frazil ice concentrations observed in the Arctic and Antarctic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.