Abstract

The influence of the NbAl 3 microstructure on its oxidation mechanism was investigated in air under atmospheric pressure over the temperature range 500-1080°C. Different processing techniques as induction melting and mechanically-activated annealing processes (M2AP) were used to produce the intermetallic compound NbAl 3 . A protective external alumina scale grew only on Al-enriched NbAl 3 between 700 and 1080°C. Stoichiometric NbAl 3 exhibited the pesting phenomenon between 550-900°C, whereas a non protective lamellar oxide scale formed above 900°C. The proposed oxidation mechanism explains these observations which are in agreement with the oxidation study of powders with different crystallite sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.