Abstract

The medial prefrontal cortex (mPFC) modulates neurovegetative and behavioral responses, being involved in memory, attention, motivational and executive processes. There is evidence indicating that mPFC modulates cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint is an unavoidable stress situation that evokes marked and sustained cardiovascular changes, characterized by elevated blood pressure (BP) and intense heart rate (HR) increase. We presently report effects of mPFC pharmacological manipulations on BP and HR responses evoked by acute restraint in rats. Bilateral microinjection of 200 nl of the unspecific synaptic blocker CoCl 2 (1 mM) in the mPFC prelimbic area (PL) increased HR response to acute restraint, without significant effect on the BP response. This result indicates that PL synaptic mechanisms have an inhibitory influence on restraint-evoked HR changes. Injections of the non-selective glutamatergic receptor antagonist kynurenic acid (0.02M) or the selective N-methyl- d-aspartic acid (NMDA) receptor glutamatergic antagonist (LY235959) (0.02 M) caused effects similar to cobalt, suggesting that local glutamatergic neurotransmission and NMDA receptors mediate the PL inhibitory influence on restraint-related HR responses. Pretreatment with the non-non- N-methyl- d-aspartic acid glutamatergic antagonist glutamatergic antagonist glutamatergic receptor antagonist NBQX (0.02 M) did not affect restraint-related cardiovascular responses, reinforcing the idea that NMDA receptors mediate PL-related inhibitory influence. Pretreatment with the glutamatergic-receptor antagonists did not affect baseline BP or HR values. I.v. pretreatment with the quaternary ammonium anticholinergic drug homatropine methyl bromide (0.2 mg/kg) also increased the restraint-related HR response to values similar to those observed after treatment with kynurenic acid or LY235959, thus, suggesting that PL inhibitory influence on restraint-evoked heart rate increase could be related to increased parasympathetic activity. This dose of homatropine had no significant effects on baseline BP or HR values. Results suggest a PL inhibitory influence on restraint-evoked HR increase. They also indicate that local NMDA receptors involved in parasympathetic activation mediate PL inhibitory influence on restraint-evoked HR increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.