Abstract
Primary rat adipocytes cultured in basement membrane component gels migrated and organized into large, three-dimensional, multicellular clusters. Gross morphological changes seen during this reorganization are described. The rate of cluster formation decreased with age of the rats and was stimulated by insulin in older, but not in younger rats. Echistatin, a disintegrin, partially inhibited the formation of multicellular clusters in a concentration-dependent fashion (50% inhibitory concentration approximately 10 nM). The original extracellular matrix was initially remodeled and eventually destroyed by the time large multicellular clusters were observed. This implied that one or more matrix-degrading protease(s) were being secreted. Adipocyte-conditioned medium was found to contain a divalent cation-sensitive gelatinase activity at approximately 72 and/or approximately 62 kDa. The elution profile of this activity from gelatin-Sepharose 4B was similar to matrix metalloproteinase 2 (MMP-2, a 72-kDa matrixin with a 62-kDa mature form), and the dimethyl sulfoxide eluant from these columns contained MMP-2 immunoreactivity. MMP-2 concentration and activity were greater in conditioned medium from young than from older animals; however, insulin did not affect the amount of MMP-2 in adipocyte-conditioned media. The matrixin inhibitor 1,10-phenanthroline not only blocked gelatinase activity in zymograms but also prevented extracellular matrix remodeling and destruction, as well as adipocyte migration and the formation of cell-cell contacts in adipocyte cultures. These observations are consistent with the hypothesis that the matrixin MMP-2 is secreted by adipocytes. Whereas matrixin activity alone may not be sufficient for the formation of multicellular clusters, the data indicate that it may have a requisite role in this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.