Abstract

BackgroundThe Env glycoproteins of retroviruses play an important role in the initial steps of infection involving the binding to cell surface receptors and entry by membrane fusion. The Env glycoprotein also plays an important role in viral assembly at a late step of infection. Although the Env glycoprotein interacts with viral matrix proteins and cellular proteins associated with lipid rafts, its possible role during the early replication events remains unclear. Truncation of the cytoplasmic tail (CT) of the Env glycoprotein is acquired by SIV in the course of adaptation to human cells, and is known to be a determinant of SIV pathogenicity.ResultsWe compared SIV viruses with full length or truncated (T) Env glycoproteins to analyze possible differences in entry and post-entry events, and assembly of virions. We observed that early steps in replication of SIV with full length or T Env were similar in dividing and non-dividing cells. However, the proviral DNA of the pathogenic virus clone SIVmac239 with full length Env was imported to the nucleus about 20-fold more efficiently than proviral DNA of SIVmac239T with T Env, and 100-fold more efficiently than an SIVmac18T variant with a single mutation A239T in the SU subunit and with a truncated cytoplasmic tail (CT). In contrast, proviral DNA of SIVmac18 with a full length CT and with a single mutation A239T in the SU subunit was imported to the nucleus about 50-fold more efficiently than SIVmac18T. SIV particles with full length Env were released from rhesus monkey PBMC, whereas a restriction of release of virus particles was observed from human 293T, CEMx174, HUT78 or macrophages. In contrast, SIV with T Envs were able to overcome the inhibition of release in human HUT78, CEMx174, 293T or growth-arrested CEMx174 cells and macrophages resulting in production of infectious particles. We found that the long CT of the Env glycoprotein was required for association of Env with lipid rafts. An Env mutant C787S which eliminated palmitoylation did not abolish Env incorporation into lipid rafts, but prevented virus assembly.ConclusionThe results indicate that the long cytoplasmic tail of the SIV Env glycoprotein may govern post-entry replication events and plays a role in the assembly process.

Highlights

  • The Env glycoproteins of retroviruses play an important role in the initial steps of infection involving the binding to cell surface receptors and entry by membrane fusion

  • The results indicated that production of particles by SIV with full length Env was cell type dependent: particles were produced in monkey PBMC and release of particles was inhibited in human T cells and macrophages

  • In contrast to SIV with full length Env, similar levels of assembly and release were observed for SIV with truncated Env in monkey PBMC, human HUT78, CEMx174, 293T, growth-arrested CEMx174 cells and macrophages resulting in production of infectious particles

Read more

Summary

Introduction

The Env glycoproteins of retroviruses play an important role in the initial steps of infection involving the binding to cell surface receptors and entry by membrane fusion. Removal of the cytoplasmic domain can increase the expression of Env on the surface of infected cells, its incorporation into VLPs or membrane vesicles [7,8,9] and the fusion activity of the Env glycoprotein [10,11]. When SIV strains were passaged on human cell lines they frequently acquired a premature stop codon and expressed a truncated Env glycoprotein that lacks all but approximately 20 amino acids of the cytoplasmic domain [15,16,17,18]. Variants of HIV with truncated Env are rarely isolated from infected patients, even though HIV-1 infected patients can harbor viruses with truncated Env that are able to mediate CD4-independent infection of CD8+ cells [20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call