Abstract

The enteric nervous system plays a key role in maintenance of body fluid homeostasis by regulating the transport of ions by the intestinal epithelium. The epithelial cells normally absorb large volumes of fluid and ions daily, but tonically active submucosal neurons continuously suppress ion transport and limit the absorptive capacity of the intestine. Specialized nerve endings detect chemical, osmotic, or thermal alterations of the luminal contents or mechanical activity of the gut wall and encode this information as action potentials that propagate along nerve processes to the ganglia. Information transfer within the ganglia occurs at nicotinic cholinergic or other synapses. Ion transport is altered when neurotransmitters released from motor neurons interact with receptors on epithelial cells to initiate stimulus-response coupling. The signals that transduce changes in epithelial ion transport are largely unknown, except for acetylcholine, but may include vasoactive intestinal peptide or other peptides. These trigger changes in intracellular messengers that influence the state of ionic channels in the epithelial cells and thereby inhibit absorptive processes or stimulate secretory mechanisms. When conservation of salt and water is necessary, command signals from the central nervous system, and perhaps from the myenteric ganglia, will shut down the synaptic circuits in the submucosal ganglia and enhance the absorptive capacity of the bowel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call