Abstract
Neutrophil-specific granule deficiency (SGD) is a rare autosomal recessive primary immunodeficiency characterized by bilobed neutrophil nuclei and lack of neutrophil-specific granule proteins such as lactoferrin. A deficiency of a myeloid-specific transcription factor, CCAAT/enhancer binding protein-epsilon (C/EBPε), has been identified as a cause of SGD. C/EBPε binds to DNA though its basic leucine zipper (bZIP) domain, and regulates terminal differentiation of neutrophils and expression of specific granule genes. Homozygous frameshift mutations resulting in loss of the bZIP domain have been reported in two patients with SGD. A recent observation showed that a homozygous 2-aa deletion in the bZIP domain with normal DNA-binding and dimerization abilities causes SGD by impairing protein-protein interactions with other transcription factors, indicating that multiple molecular mechanisms can lead to SGD. Studies of patient-derived mutations and analysis of C/EBPε knockout mice have shown the importance of the bZIP domain for the essential functions of C/EBPε.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.