Abstract

BackgroundHypoxia is considered a critical contributor to renal cell carcinoma progression, including invasion and metastasis. However, the potential mechanisms by which it promotes invasion and metastasis have not yet been clarified. The purpose of this study was to investigate the role and mechanism of hypoxia-induced renal cell carcinoma and provide evidence-based medical proof for improvements to postoperative nursing of renal cell carcinoma patients. A total of 64 patients with renal cell carcinoma were divided into the observation group (nursing based on oxygen administration) and the control group (conventional nursing). Renal function indexes, serum inflammatory factors, and tumor markers were evaluated. The human renal cell carcinoma cell line A498 under hypoxia/normoxia was used as an experimental model in vitro and the biological characteristics and mitochondrial function of the cells were assessed.ResultsNursing based on oxygen administration decreased the value of renal function indexes, serum inflammatory factors, and tumor markers in renal cell carcinoma patients. Hypoxia was found to induce A498 cell invasion, migration, and the release of inflammatory cytokines, while repressing human solute carrier family 14 member 1 gene expression. Elevated levels of solute carrier family 14 member 1 expression induced mitochondrial reactive oxygen species accumulation, diminished the intracellular adenosine triphosphate level, and destroyed both mitochondrial membrane potential integrity and mitochondrial morphology. Overexpression of the solute carrier family 14 member 1 gene could abolish hypoxia-induced invasion, reduce the migration of A498 cells, inhibit the hypoxia-induced release of inflammatory cytokines, and arrest the cell cycle at the G1/S checkpoint.ConclusionsThese data reveal that nursing based on oxygen administration can improve the clinical efficacy of renal cell carcinoma therapies, being safe and effective. The results elucidate a mechanism wherein the solute carrier family 14 member 1 gene participates in the occurrence and development of hypoxia-induced renal cell carcinoma in a mitochondria-dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.