Abstract

The protein–gold nanoparticle bioconjugates are playing an important role in the studies of biological systems. The nature of the interaction and the magnitude of the binding affinity together with the conformational changes in the protein upon binding are the most addressed topics in relation to the uses of the bioconjugates in different organisms. In this work, we study the human serum albumin (HSA) protein–gold nanoparticle (AuNP) interactions focusing on the nature of the gold nanoparticle surface modification. We have found that the interactions of the HSA with the AuNPs are mainly electrostatic and that the concentration of protein necessary to stabilize the conjugates decreases when the overall negative charge on the nanoparticle surface increases. The changes in the localized surface plasmon resonance (LSPR) signals of the gold nanoparticles (13 nm diameter) are used to determine the number of protein molecules necessary to stabilize the conjugates in a high ionic strength medium. Fluorescence spectroscopy (stationary and time-resolved) is used to characterize the different bioconjugates and determine the binding constants under different experimental conditions. Moreover, the use of an extrinsic fluorescence probe (1-anilino-8-naphthalenesulfonic acid, ANS) gives us some information about the existence of partial unfolding of the protein upon binding to the nanoparticle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.