Abstract

Conventionally, ATP is considered to be the principal energy source in cells. However, over the last few years, a novel role for ATP as a potent extracellular signaling molecule and the principal source of extracellular pyrophosphate, the main endogenous inhibitor of vascular calcification, has emerged. A large body of evidence suggests that two principal mechanisms are involved in the initiation and progression of ectopic calcification: high phosphate concentration and pyrophosphate deficiency. Pathologic calcification of cardiovascular structures, or vascular calcification, is a feature of several genetic diseases and a common complication of chronic kidney disease, diabetes, and aging. Previous studies have shown that the loss of function of several enzymes and transporters involved in extracellular ATP/pyrophosphate metabolism is associated with vascular calcification. Therefore, pyrophosphate homeostasis should be further studied to facilitate the design of novel therapeutic approaches for ectopic calcification of cardiovascular structures, including strategies to increase pyrophosphate concentrations by targeting the ATP/pyrophosphate metabolism cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.