Abstract

We investigated how the electro-optic characteristics of the fringe-field switching (FFS) liquid crystal (LC) mode are affected by elastic constants of LCs. Unlike conventional liquid crystal (LC) devices, in which mainly the dielectric torque determines reorientation of LC, the field-induced LC reorientation in the fringe-field switching (FFS) mode is controlled first by dielectric torque and then by pure elastic torque between LCs so that the transmittance oscillates along the electrode positions. We find that elastic constants of the LC play an important role on the field-induced dynamics of the LC molecules such that the higher the splay constant is, the higher the light efficiency becomes, which is a unique characteristic of the FFS mode. The results present an important design of physical properties of LC to enhance better transmittance in the FFS mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call