Abstract

The present paper examines the influence of the forcing frequency on the response of a randomly perturbed Hodgkin-Huxley system in the realm of suprathreshold amplitudes. Our results show that, in the presence of noise, the choice of driving frequency can seriously affect the precision of the external information transmission. At the same level of noise the precision can either decrease or increase depending on the driving frequency. We demonstrate that the destructive influence of noise on the interspike interval can be effectively reduced. That is, with driving signals in certain frequency ranges, the system can show stable periodic spiking even for relatively large noise intensities. Here, the most accurate transmission of an external signal occurs. Outside these frequency ranges, noise of the same intensity destroys the regularity of the spike trains by suppressing the generation of some spikes. On the other hand, we show that noise can have a reconstructive role for certain driving frequencies. Here, increasing noise intensity enhances the coherence of the neuronal response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.