Abstract
The recent structures of cobalamin-dependent methionine synthase and methylmalonyl-CoA mutase have revealed a striking conformational change that accompanies cofactor binding to these proteins. Alkylcobalamins have octahedral geometry in solution at physiological pH, and the lower axial coordination position is occupied by the nucleotide, dimethylbenzimidazole ribose phosphate, that is attached to one of the pyrrole rings of the corrin macrocycle via an aminopropanol moiety. In contrast, in the active sites of these two B12-dependent enzymes, the nucleotide tail is held in an extended conformation in which the base is far removed from the cobalt in cobalamin. Instead, a histidine residue donated by the protein replaces the displaced intramolecular base. This unexpected mode of cofactor binding in a subgroup of B12-dependent enzymes has raised the question of what role the nucleotide loop plays in cofactor binding and catalysis. To address this question, we have synthesized and characterized two truncated cofactor analogues: adenosylcobinamide and adenosylcobinamide phosphate methyl ester, lacking the nucleotide and nucleoside moieties, respectively. Our studies reveal that the nucleotide tail has a modest effect on the strength of cofactor binding, contributing approximately 1 kcal/mol to binding. In contrast, the nucleotide has a profound influence on organizing the active site for catalysis, as evidenced by the retention of the base-off conformation in the truncated cofactor analogues bound to the mutase and by their inability to support catalysis. Characterization of the kinetics of adenosylcobalamin (AdoCbl) binding by stopped-flow fluorescence spectroscopy reveals a pH-sensitive step that titrates to a pKa of 7.32 +/- 0.19 that is significantly different from the pKa of 3.7 for dimethylbenzimidazole in free AdoCbl. In contrast, the truncated cofactors associate very rapidly with the enzyme at rates that are too fast to measure. Based on these observations, we propose a model in which the base-on to base-off conformational change is slow and is assisted by the enzyme, and is followed by a rapid docking of the cofactor in the active site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.