Abstract
The gamma-subunit of coupling factor 1 (CF1) contains a cysteine bridge that is thought to be involved in the redox control of enzymatic activity. In order to test the regulatory significance of this disulfide bond, genetic transformation experiments with Chlamydomonas reinhardtii were performed. C. reinhardtii strain atpC1 (nit1-305, cw 15, mt-), which is null for the gamma-subunit, was transformed and complemented with gamma-subunit constructs containing amino acid substitutions localized to the cysteine bridge between Cys198 and Cys204. Successful complementation was confirmed by phenotypic selection, Northern blot analysis, reverse transcription polymerase chain reaction, and cDNA sequencing. CF1 ATPase activities of the soluble enzymes were measured in the presence and absence of dithiothreitol (DTT). Mutant CF1 enzymes showed no effect of DTT although increased activity was observed for the wild-type enzyme. In vitro, phenazine methosulfate-dependent photophosphorylation assays revealed that wild-type CF1 exhibits a 2-fold stimulation in the presence of 25 mM DTT, whereas each of the mutant enzymes has activities that are DTT-independent. Growth measurements indicated that despite the absence of a regulatory disulfide/dithiol, the mutant strains grew with the same kinetics as wild type. This study provides evidence to illustrate the involvement of the gamma-subunit in the redox regulation of ATP synthesis in vivo. This work is also the first demonstration in C. reinhardtii of stable nuclear transformation using mutated genes to complement a known defect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.