Abstract

Ni-based superalloy components for high-temperature applications rely on the long term stability of the microstructure and mechanical properties at service temperatures. Nowadays, the production of such types of components is frequently performed via Additive Manufacturing (AM) technologies. Nevertheless, few studies are dedicated to understanding the behavior of AM Ni-based superalloys upon prolonged exposure to high temperatures. This work aims at studying the effect of prolonged thermal exposures on the microstructure and mechanical properties of Inconel 625 processed by laser powder bed fusion. Thermal exposures within the range of 600 °C and 900 °C for 200 h were performed on this material. The as-built and solution annealed Inconel 625 conditions were selected. The solution annealed state implies a complete chemical homogenization, typically recommended for working at high temperatures, whereas the initial as-built state is characterized by segregations and fine dendritic structures. Upon the studied prolonged thermal exposures, the peculiar as-built microstructure formed a higher quantity of phases with smaller dimensions with respect to the solution annealed condition under thermal exposures. The smaller phases of the as-built state resulted in similar mechanical properties evolution under different temperatures. Differently, the prolonged heat-treated solution annealed conditions exhibited more marked mechanical properties variations due to coarser phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.