Abstract
Previous work showed that GABAergic differentiation in developing chick retina depends on insulin and cell interactions. Here, we investigated whether it depended on cell signaling mediated by retina cognin, a 50 kDa cell recognition molecule. Cognin mediates cell adhesion in vitro and occurs on retinal neurons that become both GABAergic and cholinergic. We investigated two markers of GABAergic differentiation: glutamate decarboxylase (GAD) activity and high-affinity GABA uptake. Both increase during differentiation of retinal neurons in culture and can be easily measured. We blocked cognin-mediated cell signaling with cognin antibody and found a reduction of the developmental increase in GAD activity in cultures of retinal neurons from 7 and 11 day chick embryos. There was no reduction of high-affinity GABA uptake. This suggested that cognin-mediated signaling was necessary for the normal developmental increase in GAD but not for high-affinity GABA uptake. These results contrasted with our previous observations on cholinergic differentiation in cultured retinal neurons. We found that cognin antibody blocked the normal developmental increase in choline acetyltransferase (ChAT) only if the cells were exposed before embryonic day 7. Thus, while both GAD and ChAT activity appear to be controlled by cell signaling involving cognin, the periods of developmental sensitivity for the two differentiation markers are different. Antibodies to other adhesion molecules, Ng-CAM, and N-cadherin, did not similarly affect GAD activity. Antibodies to laminin at a 10-fold higher concentration inhibited GAD activity only in early embryonic retina. Tests for protein synthesis and “housekeeping” enzyme activity demonstrated that the cognin antibody effect was selective for neuronal differentiation pathways. Thus, GABAergic differentiation in developing retina is sensitive to cell signaling mediated in part by cognin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.