Abstract

Neurodegenerative diseases are often associated with both normal and premature aging. Resumption of the cell cycle by neurons induced by DNA damage may lead to their apoptosis, which contributes to the degeneration of neuronal tissue. Cell cycle and DNA replication proteins are frequently found in patients with neurodegenerative diseases. Oxidative stress, which is considered to play an important role in aging and pathogenesis of many neurodegenerative diseases, can induce DNA damage and stimulate cell cycle re-entry by neuronal cells. DNA damage activates ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), breast cancer 1 (BRCA1), E2F transcription factor 1 (E2F1), and other proteins that regulate the cell cycle, DNA damage repair, and apoptosis. Because the E2F complexes associate with histone-modifying enzymes, histone modifications, including histone acetylation and methylation, are required for cell cycle re-entry and may play a regulatory role in DNA repair or apoptosis. Aberrant cell cycle regulation has been shown to play a role in age-related macular degeneration (AMD) in which retinal cells are affected and in inclusion body myositis, which is characterized by muscle cell dysfunction. There is also evidence to suggest that cytostatic chemotherapy could decrease dementia in Alzheimer's disease and multiple myeloma, supporting the use of cell cycle inhibitors in the therapy of degenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.