Abstract

The influence of the catalyst support on the oxidation of methane over palladium has been studied using a microcalorimetric bead reactor. The nature of the support had no detectable influence on the catalytic activity during a given experiment, but was found to affect the long-term stability of the catalyst.Investigations have been made of the kinetics of the oxidation of methane over a palladium/thoria catalyst both in the absence and in the presence of the reaction products. Oxidation was found to be strongly inhibited by the water formed, which tended to cause permanent deactivation of the catalyst; there was also very slight inhibition by carbon dioxide. Measurements of the rates of co-oxidation of methane with other compounds showed that methanol reacted independently, whereas formaldehyde and carbon monoxide were both oxidized competitively.It has been shown that the reactivity of water towards the catalyst support is an important factor governing the deterioration of catalytic activity. In accordance with this there was no evidence of catalyst deactivation when methane was co-oxidized with methanol, which would be expected to displace water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.