Abstract
The binding properties toward the human telomeric G-quadruplex of the two natural alkaloids coptisine and chelerythrine were studied using spectroscopic techniques, molecular modeling, and X-ray diffraction analysis. The results were compared with reported data for the parent compounds berberine and sanguinarine. Spectroscopic studies showed modest, but different rearrangements of the DNA-ligand complexes, which can be explained considering particular stereochemical features for these alkaloids, in spite of the similarity of their skeletons. In fact, the presence of a dioxolo moiety rather than the two methoxy functions improves the efficiency of coptisine and sanguinarine in comparison to berberine and chelerythrine, and the overall stability trend is sanguinarine > chelerythrine ≈ coptisine > berberine. Accordingly, the X-ray diffraction analysis confirmed the involvement of the benzodioxolo groups in the coptisine/DNA binding by means of π···π, O···π, and CH···O interactions. Similar information is provided by modeling studies, which, additionally, evidenced reasons for the quadruplex vs double-helix selectivity shown by these alkaloids. Thus, the analyses shed light on the key role of the benzodioxolo moieties in strengthening the interaction with the G4-folded human telomeric sequence and indicated the superior G4 stabilizing properties of the benzophenanthridine scaffold with respect to the protoberberine one and conversely the better G4 vs dsDNA selectivity profile of coptisine over the other alkaloids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.