Abstract

Molecular dynamics simulations of crystallization in a supercooled liquid of Lennard-Jones particles with different range of attractions shows that the inclusion of the attractive forces from the first, second, and third coordination shell increases the trend to crystallize systematic. The bond order Q_{6} in the supercooled liquid is heterogeneously distributed with clusters of particles with relative high bond order for a supercooled liquid, and a systematic increase of the extent of heterogeneity with increasing range of attractions. The onset of crystallization appears in such a cluster, which together explains the attractive forces influence on crystallization. The mean-square displacement and self-diffusion constant exhibit the same dependence on the range of attractions in the dynamics and shows, that the attractive forces and the range of the forces plays an important role for bond ordering, diffusion, and crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.