Abstract

A series of olivomycin A derivatives containing different combinations of the acyl residues in the carbohydrate chains was obtained. The formation of complexes of Mg(2+)-coordinated dimers of these compounds with double-stranded DNA was studied using spectral methods such as absorption, fluorescence and circular dichroism (CD) spectral analyses. There was a good correlation of the values of binding constants of complexes (antibiotic)2Mg(2+)-DNA, the quantum yields of fluorescence and changes of the induced CD spectra with topoisomerase I inhibition and cytotoxicity. We demonstrate that the presence of the acyl groups in the saccharide residues of olivomycin A derivatives is absolutely necessary for a high cytotoxic potency of these antibiotics. On the basis of the experimental results and quantum chemical calculations, we presume that the acyl residue in the 4-O-position in the A-sugar residue is involved, to the most part, in the antibiotic-antibiotic interactions in the (olivomycin)2Mg(2+) dimers, whereas the O-acyl group in E-olivomicose residue largely participates in the formation of the (olivomycin)2Mg(2+)-DNA complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.