Abstract

The molecular basis underlying the pathogenic success of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is not completely understood, but differential gene expression has been suggested to account at least in part for the high virulence of CA-MRSA strains. Here, we show that the agr gene regulatory system has a crucial role in the development of skin infections in the most prevalent CA-MRSA strain USA300. Importantly, our data indicate that this is due to discrepancies between the agr regulon of CA-MRSA and those of hospital-associated MRSA and laboratory strains. In particular, agr regulation in strain USA300 led to exceptionally strong expression of toxins and exoenzymes, upregulation of fibrinogen-binding proteins, increased capacity to bind fibrinogen, and increased expression of methicillin resistance genes. Our findings demonstrate that agr functionality is critical for CA-MRSA disease and indicate that an adaptation of the agr regulon contributed to the evolution of highly pathogenic CA-MRSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call