Abstract

We have previously demonstrated that the Escherichia coli strain mutS DeltapolA had a higher rate of transition and minus frameshift mutations than mutS or DeltapolA strains. We argued that DNA polymerase I (PolI) corrects transition mismatches. PolI, encoded by the polA gene, possesses Klenow and 5' --> 3' exonuclease domains. In the present study, rates of mutation were found to be higher in Klenow-defective mutS strains and 5' --> 3' exonuclease-defective mutS strains than mutS or polA strains. The Klenow-defective or 5' --> 3' exonuclease-defective mutS strains showed a marked increase in transition mutations. Sites of transition mutations in mutS, Klenow-defective mutS and 5' --> 3' exonuclease-defective mutS strains are different. Thus, it is suggested that, in addition to mutS function, both the Klenow and 5' --> 3' exonuclease domains are involved in the decrease of transition mutations. Transition hot and warm spots in mutS+ polA+ strains were found to differ from those in mutS and mutS DeltapolA strains. We thus argue that all the spontaneous transition mutations in the wild-type strain do not arise from transition mismatches left unrepaired by the MutS system or MutS PolI system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.