Abstract
Trichoderma virens is a ubiquitous soil fungus successfully used in biological control due to its efficient colonization of plant roots. In fungi, 4-phosphopantetheinyl transferases (PPTases) activate enzymes involved in primary and secondary metabolism. Therefore, we cloned the PPTase gene ppt1 from T. virens and generated PPTase-deficient (?ppt1) and overexpressing strains to investigate the role of this enzyme in biocontrol and induction of plant defense responses. The ?ppt1 mutants were auxotrophic for lysine, produced nonpigmented conidia, and were unable to synthesize nonribosomal peptides. Although spore germination was severely compromised under both low and high iron availability, mycelial growth occurred faster than the wild type, and the mutants were able to efficiently colonize plant roots. The ?ppt1 mutants were unable of inhibiting growth of phytopathogenic fungi in vitro. Arabidopsis thaliana seedlings co-cultivated with wild-type T. virens showed increased expression of pPr1a:uidA and pLox2:uidA markers, which correlated with enhanced accumulation of salicylic acid (SA), jasmonic acid, camalexin, and resistance to Botrytis cinerea. Co-cultivation of A. thaliana seedlings with ?ppt1 mutants compromised the SA and camalexin responses, resulting in decreased protection against the pathogen. Our data reveal an important role of T. virens PPT1 in antibiosis and induction of SA and camalexin-dependent plant defense responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.