Abstract
AbstractThe anisotropy in room temperature plastic deformation has been investigated in single α(HCP)/β(BCC) colonies of a commercial α/β titanium alloy (Ti-6Al-2Sn-4Zr-2Mo-0.1Si) oriented for activation of individual basal slip systems. Detailed transmission electron microscopy (TEM) studies of the slip transmission mechanisms through the α/β interfaces have been performed to elucidate the role of these interfaces in determining yield and strain hardening behavior. Significant anisotropy in the yield strengths and hardening rates for the 3 unique basal slip systems is measured, and is attributed to the different slip transmission mechanisms active due to the near-Burgers orientation relationship existing between α- and β-phases. These results are should be transferable to other alloy systems exhibiting this orientation relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.