Abstract

Prolonged muscle disuse is accompanied by a phenotypic shift characterized by declines in mitochondrial content and function within skeletal muscle. This loss in mitochondrial content can be partially attributed to elevations in various catabolic processes that occur with atrophy. One of these is termed mitophagy, a selective form of cellular recycling (autophagy) whereby dysfunctional mitochondria are degraded via lysosomes. TFEB and TFE3 are key transcription factors that regulate lysosomes by activating the expression of various lysosomal genes. Loss of TFE3 has been associated with depressed levels of autophagy and with mitochondrial dysfunction. It is speculated that these functional impairments are due to diminished clearance via the lysosomes, however to date this has not been examined. We hypothesized that the loss of TFE3 would amplify the mitochondrial dysfunction associated with muscle disuse, while paradoxically preserving muscle mass and mitochondrial content. Using a severe model of muscle disuse, sciatic denervation, we observed a 10% loss in hindlimb muscle mass within 7 days of denervation. In the absence of TFE3, a trend for muscle preservation was observed, as these animals lost 20% less muscle mass than WT counterparts. Reduced rates of respiration supported by complex I and II were observed irrespective of genotype, concurrent with elevated ROS emissions, suggesting an impaired oxidative capacity following 7 days of denervation. Surprisingly, TFE3 KO animals did exhibit lower levels of oxidative stress basally, but this too increased following 7 days of denervation, and taken relative to baseline the fold induction of ROS emission was 3 times greater than WT animals. Higher levels of mitophagy flux were observed in the absence of TFE3 basally, which supports the observed 35% decline in mitochondrial content as measured by COX activity, as well as the lower levels of ROS emissions. Following only 1 day of denervation, increases in mitophagy flux were observed in WT animals, while the response in KO animals was clearly attenuated. In the WT animals, denervation led to a 30% reduction in mitochondrial content, however no change was observed in the absence of TFE3. Finally, increases in a number of autophagy‐related markers such Beclin‐1 and ATG7 were observed following denervation irrespective of genotype. However, the mature form of Cathepsin B, a hydrolytic enzyme, was markedly reduced by 55% in the absence of TFE3 and did not increase to the same extent as WT following 7 days of denervation suggesting an impairment in lysosomal function. Together, our results suggest that TFE3 exerts multiple roles in skeletal muscle plasticity, as a partial mediator of muscle mass, and in the control of lysosomal function and mitophagy in response to the acute stress of muscle disuse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call