Abstract
For quantum search via the continuous-time quantum walk, the evolution of the whole system is usually limited in a small subspace. In this paper, we discuss how the symmetries of the graphs are related to the existence of such an invariant subspace, which also suggests a dimensionality reduction method based on group representation theory. We observe that in the one-dimensional subspace spanned by each desired basis state which assembles the identically evolving original basis states, we always get a trivial representation of the symmetry group. So, we could find the desired basis by exploiting the projection operator of the trivial representation. Besides being technical guidance in this type of problem, this discussion also suggests that all the symmetries are used up in the invariant subspace and the asymmetric part of the Hamiltonian is very important for the purpose of quantum search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.