Abstract

In contrast with theoretical predictions in which anatase TiO2(001) and its (1 × 4) reconstructed surfaces are highly reactive, recent experimental results show this surface to be inert except for the defect sites. In this report, based on a systematic study of anatase TiO2(001)-(1 × 4) surface using first-principles calculations, the tensile stress is shown to play a crucial role on the surface reactivity. The predicted high reactivity based on add-molecule model is due to the large surface tensile stress, which can be easily suppressed by a stress-release mechanism. We show that various surface defects can induce stress release concomitantly with surface passivation. Thus the synthesis of anatase(001) surface with few defects is essential to improve the reactivity, which can be achieved, for example, via H2O adsorption. Our study provides a uniform interpretation of controversial experimental observations and theoretical predictions on anatase TiO2(001) surface and further proposes new insights into the origin of surface reactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.