Abstract

In this paper we study the role of surface plasmon modes in the Casimir effect. The Casimir energy can be written as a sum over the modes of a real cavity and one may identify two sorts of modes, two evanescent surface plasmon modes and propagative modes. As one of the surface plasmon modes becomes propagative for some choice of parameters we adopt an adiabatic mode definition where we follow this mode into the propagative sector and count it together with the surface plasmon contribution, calling this contribution ``plasmonic.'' We evaluate analytically the contribution of the plasmonic modes to the Casimir energy. Surprisingly we find that this becomes repulsive for intermediate and large mirror separations. The contribution of surface plasmons to the Casimir energy plays a fundamental role not only at short but also at large distances. This suggests possibilities to tailor the Casimir force via a manipulation of the surface plasmons properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.