Abstract
Hydrogen environment embrittlement (HEE) of low-nickel austenitic stainless steels (AISI 300 series) with different chemical compositions was studied focusing on the impact of the steels surface oxides, grain sizes and dislocation arrangements. The susceptibility of the steels to HEE is judged with respect to the relative reduction of area (RRA), where the HEE susceptibility is lower for larger RRA values.For many AISI 300 steels a linear trend is observed correlating RRA and the probability of strain induced martensite formation in tensile tests. Some steels, however, depart from the general trend, revealing greater HEE resistances.A careful examination of possible factors influencing HEE of the investigated steels reveals that high RRA values are linked to a specific type of oxide layer, namely the “high constant level oxide”, as categorized by TOF-SIMS evaluation. Thus, this type of oxide layer may be able to lower the steels HEE susceptibility. Other types of surface oxides, grain sizes and dislocation arrangements in the matrix of the particular AISI 300 steels appear to be of secondary importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.