Abstract

We investigate the initial surface reaction pathways in the atomic layer deposition (ALD) of Al2O3 on GaAs (111)A and (111)B substrates using precursors trimethylaluminum (TMA) and water to ascertain the effect of surface orientation on device performance. We find that the condition of the respective substrates prior to deposition of TMA and water has a major impact on the surface reactions that follow and on the resulting interface structure. The simulations explain the atomistic mechanism of the interfacial self-cleaning effect in ALD that preferentially removes As oxides. The electronic structure of the resulting atomic configurations indicates states throughout the bandgap for the (111)B structure. By contrast, the (111)A structure has no states in the mid-gap region, thus explaining the significant experimental difference in Fermi Level Pinning behavior for corresponding devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.