Abstract
In order to study the role of surface ligands in determining optical properties of colloidal quantum dots (QDs), we have selectively fabricated and studied CdSe/CdS core-shell QDs with strongly confined electron and hole states attached with commonly used surface ligands. Optical properties, viz. absorption and fluorescence of these QDs, are characterized from which salient changes have been observed for different ligand substitutions which, through theoretical analysis, can be associated with electronic structure properties of the QD-ligand composite systems, in particular localization of wave functions of electrons and holes in the QDs and the band matching of the HOMO-LUMO gap of the ligands. The findings can be utilized to facilitate the understanding and optimization of properties of QD biomarkers with functionalizing surface ligands for targeting cellular objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.