Abstract

On account of their large surface-to-volume ratio, nanowires contain an extremely high density of surface states which can lead to significantly enhanced photocarrier lifetimes resulting in persistent photoconductivity. There are reports that attribute the high photoconductive gain of ZnO nanowire-based photodetectors to hole trapping and de-trapping following oxygen adsorption and desorption from the nanowire surface. Through this work we provide experimental evidence of the role of surface and defects in carrier dynamics, resulting in enhanced photoresponse. ZnO nanowires with an average length of about 20 μm and diameters in the range of 60–80 nm were used in this experiment. Using intensity and temperature dependence of the rise and decay rate of photocurrent, we present a detailed analysis that provides an estimate of the activation energies of carrier trapping mechanisms. The high gain ZnO nanowire photodetector was sensitive to photoexcitation at or below 370 nm corresponding to the band-edge absorption profile of ZnO. At an incident wavelength of 370 nm and at a bias field of 5 kV/cm, it was found that the maximum responsivity is over 105 A/W corresponding to an extremely high photoconductive gain of the order of 106. This corresponds to a normalized photoconductive gain of 4 × 10−3 m2V−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call