Abstract
Nanocrystalline Ge embedded in amorphous silicon dioxide matrix was fabricated by oxidizing hydrogenated amorphous Si/hydrogenated amorphous Ge (a-Si:H/a-Ge:H) multilayers. The structures before and after oxidation were systematically investigated. The orange-green light emission was observed at room temperature and the luminescence peak was located at 2.2 eV. The size dependence in the photoluminescence peak energy was not observed and the luminescence intensity was increased gradually with oxidation time. The origin for this visible light emission is discussed. In contrast to the simple quantum effect model, the surface defect states of nanocrystalline Ge are believed to play an important role in radiative recombination process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.