Abstract
The powder metallurgy (PM) approach is widely used for cost-effective production of titanium alloys and articles. In the PM approach the large specific surface of starting powders heightens the risk of excessive impurity presence and, hence, degradation of final alloy properties. The present study analyzes the opportunity to produce sintered commercially pure titanium (CP-Ti) with acceptable impurity content from powder materials. Starting titanium and titanium hydride powders were comparatively examined. The impurity elements (oxygen, chlorine, carbon) and their conditions on the powder particle surface, as well as the surface processes and gases emitted from powders upon heating, have been analyzed by means of surface science techniques. The role of hydrogen emitted from titanium hydride in material purification has been discussed. The opportunity to produce titanium materials with final admissible content of interstitials (O, C, Cl, and H) using starting titanium hydride powder has been demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.