Abstract

Metal oxide coatings have been reported to be an effective approach for stabilizing cathode interfaces, but the associated chemistry is unclear. In this work, thin films of TiO2, ZnO, and Cr2O3, which have different surface acidities/basicities, were used to modify the surface chemistry of LiNi0.6Mn0.2Co0.2O2 and study the acidity’s role in the cathode/electrolyte interphase composition and impedance under high-voltage cycling (4.5 V vs Li/Li+). Cathodes with more acidic surfaces provided higher initial specific capacity and capacity retention with cycling. More basic surfaces had higher initial impedance and greater impedance growth with cycling. These differences appeared to depend on the degree of LiPF6 salt decomposition at the interface, which was related to acidity, with more neutral surfaces having a LiF/LixPOyFz ratio close to unity, but basic surfaces had substantially more LiF. This chemistry was more significant than the cathode electrolyte interphase (CEI) thickness as the more acidic surfaces formed a thicker CEI than the basic surface, resulting in better capacity retention. These results suggest that the Brønsted acidity of cathodes directly influences electrolyte degradation, ion transport, and thus, cell lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call