Abstract

Transfer cell formation in cotyledons of developing faba bean (Vicia faba L.) seeds coincides with an abrupt change in seed apoplasm composition from one dominated by hexoses to one in which sucrose is the principal sugar. On the basis of these observations, we tested the hypothesis that sugars induce and/or sustain transfer cell development. To avoid confounding effects of in planta developmental programs, we exploited the finding that adaxial epidermal cells of cotyledons, which do not become transfer cells in planta, can be induced to form functional transfer cells when cotyledons are cultured on an agar medium. Growth rates of cotyledons cultured on hexose or sucrose media were used to inform choice of sugar concentrations. The same proportion of adaxial epidermal cells of excised cotyledons were induced to form wall ingrowths independent of sugar species and concentration supplied. In all cases, induction of wall ingrowths coincided with a marked increase in the intracellular sucrose-to-hexose ratio. In contrast, further progression of wall ingrowth deposition was correlated positively with intracellular sucrose concentrations that varied depending upon external sugar species and supply. Sucrose symporter induction and subsequent maintenance behaved identically to wall ingrowth formation in response to an external supply of hexoses or sucrose. However, in contrast to wall ingrowth formation, induction of sucrose symporter activity was delayed. We discuss the possibility of intracellular sugars functioning both as signals and substrates that induce and control subsequent development of transfer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call