Abstract

The degeneration of hair cells and spiral ganglion neurons (SGNs) is an important pathologic process in the development of sensorineural hearing loss. In a murine model, predictable and reproducible damage to SGNs occurs through the application of ouabain to the round window. Recent evidence has shown that the chemokine stromal cell-derived factor-1 (SDF-1) is a potent chemoattractant of hematopoietic stem cells (HSCs) and provides trophic support to injured tissues during development and maturation. The hypothesis for the current study is that expression of SDF-1 plays an important role in protecting SGNs and preventing further degeneration in the setting of cochlear injury. Prospective, controlled. Academic research laboratory. Auditory brainstem response (ABR) and the expression of SDF-1 mRNA and protein were examined 1, 3, 7, 14, and 30 days after application of ouabain in 35 adult mice. Following ouabain application, real-time reverse-transcription polymerase chain reaction for SDF demonstrates increased mRNA expression following ouabain injury in nontransplanted mice. A significant increase in SDF protein expression was also observed using immunolabeling techniques and Western blot analysis. SDF-1 expression is increased in the auditory nerve following cochlear injury. Further knowledge about the cochlear microenvironment, including SDF-1, is critical to maximizing HSC engraftment in the injured cochlea and providing a therapeutic option for sensorineural hearing loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call