Abstract

Abstract Stochastic variability of internal atmospheric modes, known as teleconnection patterns, drives large-scale patterns of low-frequency SST variability in the extratropics. To investigate how the decadal component of this stochastically driven variability in the South and North Pacific affects the tropical Pacific and contributes to the observed basinwide pattern of decadal variability, a suite of climate model experiments was conducted. In these experiments, the models are forced with constant surface heat flux anomalies associated with the decadal component of the dominant atmospheric modes, particularly the Pacific–South American (PSA) and North Pacific Oscillation (NPO) patterns. Both the PSA and NPO modes induce basinwide SST anomalies in the tropical Pacific and beyond that resemble the observed interdecadal Pacific oscillation. The subtropical SST anomalies forced by the PSA and NPO modes propagate to the equatorial Pacific mainly through the wind–evaporation–SST feedback. This atmospheric bridge is stronger from the South Pacific than the North Pacific due to the northward displacement of the intertropical convergence zone and the associated northward advection of momentum anomalies. The equatorial ocean dynamics is also more strongly influenced by atmospheric circulation changes induced by the PSA mode than the NPO mode. In the PSA experiment, persistent and zonally coherent wind stress curl anomalies over the South Pacific affect the zonal mean depth of the equatorial thermocline and weaken the equatorial SST anomalies resulting from the atmospheric bridge. This oceanic adjustment serves as a delayed negative feedback and may be important for setting the time scales of tropical Pacific decadal variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call